Etude Magnétique du Composé SrTb₂Fe₂O₇, Détermination des Structures Magnétiques par Diffraction Neutronique

D. SAMARAS,* A. COLLOMB, J. C. JOUBERT,† ET E. F. BERTAUT*

Laboratoire des Rayons X, C.N.R.S., B.P. No. 166-Centre de Tri-38042 Grenoble Cedex, France

Received April 15, 1974

Magnetic properties of the compound $SrTb_2Fe_2O_7$ (space group $P4_2/mnm$) have been investigated by magnetic measurements of susceptibility and magnetization and by neutron diffraction.

The Néel temperature of the iron sublattice is 628 K. At 295 K the configuration of the Fe³⁺ spins is $G_x^- \pm A_y^-$ (antiferromagnetic). At 4.2 K the configuration of Tb³⁺ spins is represented by the modes F_x^+ , C_y^+ , A_z^- coupled in the representation E_g with the mode A_z^- of the Fe³⁺ spins. The values of the magnetic moments corresponding to the different modes are obtained from the magnetic structure refinement. The value of the F_x^+ ferromagnetic mode of Tb³⁺ is 2.6 μ_B /ion at 4.2 K.

At room temperature the orientation of Fe^{3+} spins perpendicularly to the *c* axis seems to be due to a site anisotropy, the easy direction coinciding with the axis of the FeO_s bipyramids. The reorientation of Fe^{3+} spins along the *c* axis observed at 4.2 K can be explained by a strong $Fe^{3+}-Tb^{3+}$ coupling which overcomes the Fe^{3+} one ion anistropy. The low site symmetry (*m*) of Tb lifts the degeneracy completely and gives rise to a pseudodoublet (formed by two singlets of small separation) associated with an Ising-like behavior. In fact the Tb^{3+} spins are in the *m* planes, containing the *c* axis.

Les propriétés magnétiques du composé $SrTb_2Fe_2O_7$ (groupe d'espace $P4_2/mnm$) ont été étudiées par mesures magnétiques de susceptibilité et d'aimantation et par diffraction neutronique.

La température de Néel du sous-réseau du fer est de 628 K. A 295 K les spins de Fe³⁺ sont ordonnés suivant un des modes antiferromagnétiques $G_x^- \pm A_y^-$. A 4.2 K la configuration des spins de Tb³⁺ est représentée par les modes F_x^+ , C_y^+ , A_z^- couplés dans la représentation E_g au mode A_z^- des spins de Fe³⁺. Les valeurs des moments suivant les différents modes sont fournies par l'affinement de la structure magnétique. Au mode F_x^+ de Tb³⁺ correspond un moment de 2,6 μ_B /ion.

A la température ambiante, l'orientation des spins de Fe³⁺ perpendiculairement à l'axe c semble provenir d'une anisotropie de site, l'axe facile étant celui de la bipyramide FeO₅. La réorientation des spins de Fe³⁺ suivant l'axe c observée à 4.2 K peut s'interpréter par un fort couplage Fe³⁺-Tb³⁺, qui surmonte l'anisotropie à un ion de Fe³⁺. La basse symétrie de site (m) de Tb³⁺ conduit à une levée complète de dégénérescence et donne naissance à un pseudodoublet (ensemble de deux singulets de faible séparation) associé à un comportement du type Ising. En effet, les spins des ions Tb³⁺ sont situés dans les plans m, contenant l'axe c.

* And Laboratoire de Diffraction Neutronique, D.R.F., C.E.N.-G., B.P. No. 85-Centre de Tri--38042 Grenoble Cedex, France.

† And Laboratoire de Génie Physique, I.N.P.G., B.P. No. 15—Centre de Tri—38040 Grenoble Cedex, France.

Introduction

Les composés de formule générale $SrLn_2$ -Fe₂O₇, où Ln représente un élément de la série des terres rares, cristallisent dans le groupe d'espace $P4_2/mnm$ avec une maille

Copyright © 1975 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain

de paramètres $a \simeq 5.5$ Å, $c \simeq 20$ Å contenant quatre formules chimiques par maille (1). Les ions Fe³⁺ et Ln³⁺ occupent la position 8(j):xxz de ce groupe. Un affinement de la structure pour le composé SrTb₂Fe₂O₇ a conduit aux valeurs suivantes des paramètres (2):

Fe:
$$x = 0.248(4)$$
 $z = 0.4006(9)$
Tb: $x = 0.276(1)$ $z = 0.1823(3)$.

L'arrangement des atomes présente une grande analogie avec celui de la structure idéalisée de $Sr_3Ti_2O_7$ (3). Cette structure peut être décrite comme un empilement de blocs pérovskite infinis en deux dimensions et d'une épaisseur de deux mailles pérovskite dans la troisième dimension, qui coïncide avec l'axe quadratique c. Chaque bloc est déplacé par rapport au suivant d'un vecteur égal à $a\sqrt{2}/2$. Ceci conduit à des plans de raccordement entre blocs ayant un arrangement du type NaCl (Fig. 1). Dans la structure réelle des composés de la série SrLn₂Fe₂O₇ les entourages des cations sont très déformés par rapport à ceux de la structure idéale. L'ion Fe³⁺ possède 5 voisins oxygène disposés en bipyramide, au lieu de 6 voisins disposés en octaèdre dans la structure idéale.

L'échantillon de poudre du composé $SrTb_2Fe_2O_7$ destiné à l'étude par mesures magnétiques et diffraction neutronique a été préparé par calcination à 1400°C sous courant d'argon pendant quelques jours du mélange intime des oxydes Tb_2O_3 , Fe_2O_3 et du carbonate $SrCO_3$. Le contrôle du produit aux rayons X n'a pas révélé de traces d'impuretés.

Mesures Magnétiques

La susceptibilité du composé a été mesurée entre 4.2 et 1500 K à l'aide d'une balance de translation.

Aux températures supérieures à $T_{N_1} =$ 628 K le composé est paramagnétique. A la précision des mesures, la variation thermique de l'inverse de la susceptibilité est une droite (Fig. 2), dont la pente correspond à une constante de Curie molaire $C_1 = 29.75$ emu (la valeur théorique pour l'ensemble des ions Fe³⁺ et Tb³⁺ est de 31.0 emu) et une température de Curie paramagnétique $\theta_{p_1} = -112$ K.

Aux températures inférieures à T_{N_1} et jusqu' à 80 K environ, l'inverse de la susceptibilité suit une droite avec une pente différente, correspondant à une constante de Curie $C_2 = 24.58$ emu, valeur voisine de la constante de Curie de deux ions Tb³⁺ qui est de 23.64 emu. Au dessous de 80 K l'inverse de la susceptibilité s'incurve vers l'axe des T.

Aux basses températures, entre 4.2 et 77 K, les aimantations ont été mesurées en fonction du champ au moyen d'une méthode balistique en appliquant des champs jusqu'à 26 K Oe.

FIG. 1. Structure des composés $SrLn_2Fe_2O_7$ idéalisée.

FIG. 2. Inverse de la susceptibilité molaire de $SrTb_2Fe_2O_7$ en fonction de la température.

L'aimantation se décompose en un terme ferromagnétique d'aimantation spontanée σ_s et un terme linéaire avec le champ χH (Fig. 3). Entre 77 et 30 K l'aimantation spontanée ne dépasse pas $10^{-2} \mu_{\rm B}/{\rm mole}$; au dessous de 30 K, elle atteint des valeurs importantes ($\sigma_s = 2.25 \mu_{\rm B}/{\rm mole}$ à T = 20.16 K).

Nous avons déterminé à partir des courbes $\sigma(H)$ les quantités σ_s et χ jusqu'aux températures de l'ordre de 25 K, la saturation étant atteinte pour les champs utilisés. La saturation est atteinte pour des valeurs du champ d'autant plus élevées que la température est plus basse. Ce comportement est caractéristique d'une forte anisotropie magnétocristalline aux basses températures. Au dessous de 25 K la saturation n'est pas atteinte pour les champs utilisés. Pour déterminer σ_s et γ nous avons supposé une approche de la saturation de σ_s linéaire en fonction de 1/H et nous avons cherché simultanément les valeurs de σ_s et de χ par une méthode graphique. Parmi les différentes courbes $\sigma_s = \sigma - \chi H$ en fonction de 1/H avec χ comme paramètre, nous avons choisi celle correspondant à une droite et adopté pour σ_s la valeur de l'ordonnée à l'origine de la droite extrapolée (Fig. 4). Les valeurs de χ et de σ_s sont obtenues avec une précision de l'ordre de 10% jusqu'a la température de 13.8 K. Sur la Fig. 5 sontrep résentées en fonction de la température les variations de σ_s et 1/ χ . Nous remarquons une rapide augmentation de σ_s à partir de 29 K. A la même température, T_{N_2} , la courbe de l'inverse de susceptibilité présente un

FIG. 3. Aimantation de $SrTb_2Fe_2O_7$ en fonction du champ appliqué, pour différentes témpératures.

FIG. 4. Détermination graphique de l'aimantation spontanée et de la susceptibilité de $SrTb_2Fe_2O_7$.

minimum caractéristique: un comportement antiferromagnétique du sous-réseau de Tb³⁺ commence à se manifester à partir de T_{N_2} . Au dessus de cette température, ce même sous-réseau se comporte comme paramagnétique.

Etude par Diffraction Neutronique

Trois diagrammes de diffraction neutronique ont été enregistrés, aux températures de 700, 295 et 4.2 K. Le diagramme à 700 K, dans la région paramagnétique, ne contient que les

FIG. 5. Aimantation spontanée et inverse de la susceptibilité en fonction de la température. La valeur de σ_s à 4.2 K est celle déterminée par affinement de la structure magnétique.

SAMARAS ET AL.

TABLEAU I

	21x	2 _{xx}	2 _z	Ī		
A 19	1	1	1	1	$A_x^ G_y^-$	
A_{2g}	Ī	ī	1	1	$G_x^- + A_y^-$	F_{z}^{+}
B_{ig}	1	ī	1	1	$A_{x}^{-} + G_{y}^{-}$	C_{z}^{+}
B2g	Ī	1	1	1	$G_x^ A_y^-$	
A_{14}	1	1	1	Ī	$G_{x}^{+} + A_{y}^{+}$	F_z^-
A 24	Ī	Ī	1	ī	$A_{x}^{+} - G_{v}^{+}$	
B 14	1	Ī	1	Ī	$G_{x}^{+} - A_{y}^{+}$	
B24	I	1	1	Ĩ	$A_{x}^{+} + G_{y}^{+}$	C_z^-
E_g	$\begin{pmatrix} 1 \\ . \mathbf{I} \end{pmatrix}$	$\begin{pmatrix} .1\\ 1 \end{pmatrix}$	$\binom{1}{.1}$	$\binom{1}{.1}$	$\begin{pmatrix} F_x^+ \\ F_y^+ \end{pmatrix} \begin{pmatrix} C_y^+ \\ C_x^+ \end{pmatrix}$	$\begin{pmatrix} G_z \\ A_z \end{pmatrix}$
E _u	$\begin{pmatrix} 1 \\ . \overline{1} \end{pmatrix}$	$\begin{pmatrix} .1\\ 1 \end{pmatrix}$	$\begin{pmatrix} \mathbf{I} \\ . \mathbf{I} \end{pmatrix}$	$\begin{pmatrix} \mathbf{I} \\ . \mathbf{I} \end{pmatrix}$	$\begin{pmatrix} C_{x} \\ -C_{y} \end{pmatrix} \begin{pmatrix} -F_{y} \\ F_{x} \end{pmatrix}$	$\begin{pmatrix} A_z^+ \\ -G_z^+ \end{pmatrix}$

MATRICES REPRÉSENTATIVES DES GÉNÉRATEURS DU GROUPE $P4_2/mnm$ et Vecteurs de Base de Chaque Représentation pour la position 8(j)

raies nucléaires. Les raies magnétiques présentes dans les deux autres diagrammes ont été indexées dans une maille magnétique identique à la maille cristallographique.

Nous avons utilisé la méthode macroscopique (4, 5) pour dénombrer les configurations possibles des spins. Dans l'hypothèse d'un hamiltonien d'ordre 2, les modes magnétiques couplés doivent appartenir à la même représentation du groupe d'espace cristallographique.

Les ions en position 8(j) du groupe sont numérotés de 1 à 8 dans l'ordre suivant: (1) xxz, (2) $\bar{x}\bar{x}z$, (3) $\frac{1}{2} + x$, $\frac{1}{2} - x$, $\frac{1}{2} + z$, (4) $\frac{1}{2} - x$, $\frac{1}{2} + x$, $\frac{1}{2} + z$, (5) $xx\bar{z}$, (6) $\bar{x}\bar{x}\bar{z}$, (7) $\frac{1}{2} + x$, $\frac{1}{2} - x$, $\frac{1}{2} - z$, (8) $\frac{1}{2} - x$, $\frac{1}{2} + x$, $\frac{1}{2} - z$.

Nous avons choisi la numérotation des atomes de façon à pouvoir rapprocher les vecteurs de base appartenant à chaque représentation (Tableau I) aux notations F, G, C, A, (4), utilisées dans le cas des structures à quatre atomes magnétiques par site. La

TABLEAU II

CONFIGURATIONS MAGNÉTIQUES

$F^{\pm} = (S_1 + S_2 + S_3 + S_4) \pm (S_5 + S_6 + S_7 + S_6)$	· S ₈)
$G^{\pm} = (S_1 - S_2 + S_3 - S_4) \pm (S_5 - S_6 + S_7 - S_6)$	- S ₈)
$C^{\pm} = (S_1 + S_2 - S_3 - S_4) \pm (S_5 + S_6 - S_7 - S_6)$	- S ₈)
$A^{\pm} = (S_1 - S_2 - S_3 + S_4) \pm (S_5 - S_6 - S_7 + S_6)$	- S ₈)

notation adoptée est décrite dans le Tableau II.

La partie géométrique du facteur de structure magnétique pour la position 8(j), dans l'approximation $x(Fe) \simeq x(Tb) \simeq 1/4$ s'écrit:

$$\mathbf{F}_{M} = [(\mathbf{S}_{1} + \mathbf{S}_{5})\alpha + i(\mathbf{S}_{1} - \mathbf{S}_{5})\beta] \\ \times \exp\{2\pi i(h+k)x\} \\ + [(\mathbf{S}_{2} + \mathbf{S}_{6})\alpha + i(\mathbf{S}_{2} - \mathbf{S}_{6})\beta] \\ \times \exp\{-2\pi i(h+k)x\} \\ + (-1)^{h+k+l}[(\mathbf{S}_{3} + \mathbf{S}_{7})\alpha + i(\mathbf{S}_{3} - \mathbf{S}_{7})\beta] \\ \times \exp\{2\pi i(h-k)x\} \\ + (-1)^{h+k+l}[\mathbf{S}_{4} + \mathbf{S}_{8})\alpha + i(\mathbf{S}_{4} - \mathbf{S}_{8})\beta] \\ \times \exp\{-2\pi i(h-k)x\}$$

avec $\alpha = \cos 2\pi Iz$ et $\beta = \sin 2\pi Iz$.

L'expression du facteur de structure magnétique est ainsi directement liée aux modes. Il y a une correspondance entre les réflexions magnétiques et les modes (Tableau III).

Diagramme à 295 K

A la température ambiante, seuls les cations Fe^{3+} sont ordonnés. Les raies magnétiques appartiennent toutes à des modes du type A ou G. La nullité de la raie (105) exclut le mode G^+ dont le coefficient α est maximum pour cette raie et nous oblige à retenir le

TABLEAU III

FACTEURS DE STRUCTURE MAGNÉTIQUES POUR LA POSITION 8(j) du Groupe $P4_2/mnm^a$

hkl	F^+	<i>F</i> ~	G +	G⁻	C^+	<i>C</i> -	A ⁺	<i>A</i> -
0 0 2 <i>n</i>	α	iВ						
$0 \ 0 \ 2n + 1$					α	iβ		
102 <i>n</i>							iα	-β
$1 \ 0 \ 2n+1$			iα	-β				•
212 <i>n</i>			<i>— iα</i>	β				
2 1 2 <i>n</i> + 1							<i>— iα</i>	β

^a A titre d'exemple, le facteur de structure de la réflexion (0, 0, 2n) est \mathbf{F}_{M} (0, 0, 2n) = $\mathbf{F}^{+}\alpha + \mathbf{F}^{-}i\beta$.

mode G^- dont le coefficient β est nul. Une comparaison des intensités observées à celles calculées pour les modes $G_x^- \pm A_y^-$, $A_x^- \pm$ G_y^- , A_z^- , G_z^- susceptibles d'exister permet de retenir comme seules configurations possibles les modes $\pm (G_x^- \pm A_y^-)$. Ces modes fournissent les mêmes intensités calculées, car dans l'expression de l'intensité on factorise $(G_x^-)^2 + (A_y^-)^2$. La Fig. 6 représente la structure dans le cas particulier de spins dirigés suivant la diagonale de base selon le mode $G_x^- + A_y^-$. La valeur du moment de l'ion Fe³⁺ est trouvée, après affinement, égale à 4 μ_B avec un facteur de véracité R = 4%. Le Tableau IV permet une comparaison entre intensités observées et calculées.

Diagramme à 4.2 K

Sur le diagramme enregistré à la température de l'hélium liquide, on constate l'apparition de nouvelles raies très fortes dues à l'établissement d'un ordre sur le sous-réseau du terbium. En même temps les intensités de certaines raies du diagramme à la température ambiante, en particulier celles des réflexions (102) et (103) sont fortement modifiées: ceci implique un réarrangement de la structure magnétique du fer, car ces modifications ne peuvent pas se justifier par la seule contribution du terbium à l'intensité.

L'apparition de réflexions du type 001 est caractéristique d'un mode F lorsque I = 2net d'un mode C lorsque I = 2n + 1. Les résultats des mesures magnétiques, où une forte composante ferromagnétique a été observée, conduisent au mode F^+ confirmé d'ailleurs par la nullité de la raie 004 (coefficient α de F^+ presque nul). Ce mode est couplé à C^+ dans la représentation E_g bidimensionnelle (Tableau I).

FIG. 6. Structure magnétique du fer dans Sr-Tb₂Fe₂O₇ à la température ambiante pour un mode $G_x^- + A_y^-$ dirigé suivant la diagonale [110].

TABLEAU IV

Intensitiés Magnétiques Observées et Calculées de $SrTb_2Fe_2O_7$ à 295 K

 			_
hkl	$I_{\rm obsd}$	Icaled	
 100	0.0	0.0	
101	4 ^a	5.3	
102	170ª	185	
103	69	73	
104	64	68	
105	~ 0	0.4	
106	30ª	36	
107	72	74	
211	113	101	
$\left. \begin{array}{c} 2 & 1 & 3 \\ 1 & 0 & 8 \end{array} \right\}$	232	234	

" Intensité mal définie.

TABLEAU V

Intensités Magnétiques Observées et Calculées de $SrTb_2Fe_2O_7$ à 4.2 K

hkl	Iobsd	I _{calcd}	
001	7	10	
002	23	27	
003	52	49	
100)	1000	4464	
101	1020	1104	
102			
004	10 ^a	8	
005			
110	1854	129	
111	105	12)	
112			
	506	510	
104)	100	120	
115	109	120	
105	1054	01	
105 >	105"	91	
114			
106			
	2804	223	
115			
202	27ª	67	
203			
116			
107			
210	1603	1601	
211	1075	1071	
008			
204			
212			
213			
117	2204	101	
205	2284	181	
108			
214	1185	1106	
206			
215	337ª	290	
118			
216			
207			
0.0.10			
2 2 0	3044	515	
220	374	515	
221			
119)			

^a Intensité mal définie.

Les raies fortes (101), (104), (211), (214) sont toutes dues à un mode A. La très faible intensité de la raie (105) exclut le mode A^+ et ne permet que le mode A^- dont les coefficients β (Fe) et β (Tb) sont très petits. Ce mode est en effet couplé à F^+ et C^+ dans la représentation E_a .

La très faible intensité de la raie (102) nous oblige à considérer un mode A_z^- décrivant les structures des composantes du terbium et du fer suivant l'axe 0z. En effet l'expression du facteur de structure montre que cette raie n'est nulle que dans le cas de contributions en signes opposés de Fe³⁺ et de Tb³⁺ le long de cet axe.

Un affinement des composantes du moment suivant chaque axe donne un bon accord entre intensités observées et calculées (Tableau V) avec un facteur de véracité R = 6.5%. Cette structure est représentée par la Fig. 7.

Les moments magnétiques fournis par l'affinement sont:

$$S_z(Fe) = 4.9 \ \mu_B \mod A_z^-$$

 $S_x(Tb) = 2.6 \ \mu_B \mod F_x^+$
 $S_y(Tb) = 2.5 \ \mu_B \mod C_y^+$
 $S_z(Tb) = 6.5 \ \mu_B \mod A_z^-$
 $S_z(Tb) = 6.5 \ \mu_B \mod A_z^-$

Dans le cas d'une structure décrite par des modes magnétiques appartenant à une représentation unidimensionnelle réelle d'un groupe d'espace, il y a correspondance

FIG. 7. Structure magnétique du fer et du terbium dans $SrTb_2Fe_2O_7 a 4.2 K$.

directe entre cette représentation et un groupe de Shubnikov, les éléments à caractère -1 de la représentation étant les antiéléments du groupe de Shubnikov (5). Pour les représentations irréductibles à plusieurs dimensions la correspondance est fournie en considérant les seuls éléments de symétrie dont les matrices représentatives sont sphériques. Dans notre cas, les seules matrices sphériques sont celles représentant les éléments identité, antiaxe de symétrie $2_z'$ en 00z, centre de symétrie $\overline{1}$ en 000 et par conséquent l'antimiroir m' 0xy (Tableau I). Le groupe de Shubnikov est donc P2'/m', monoclinique.

Interpretations Physiques

Ordre du Sous-Réseau des Ions Fe³⁺

La structure cristalline de $SrTb_2Fe_2O_7$ est formée par l'empilement le long de l'axe c de deux mailles pérovskite de formule (Sr, Tb)-FeO₃ séparées par des couches TbO. Le sousréseau des ions Fe³⁺ est constitué par des doubles couches infinies perpendiculaires à l'axe c. Le fer y occupe un site à 5 voisins oxygène ayant la forme d'une bipyramide, l'axe de de la bipyramide étant très légèrement incliné par rapport au plan de base.

A l'intérieur d'une double couche à structure pérovskite les interactions magnétiques sont toutes du type superéchange à 180°, elles sont toutes négatives et ce sont vraisemblablement elles qui fixent les structures antiferromagnétiques à haute et basse température, le nombre d'interactions de superéchange entre premiers voisins Fe^{3+} fixant la température d'ordre (6).

Le calcul de l'énergie dipolaire pour les différents modes prévus par la théorie macroscopique fournit les énergies suivantes:

$$\begin{split} E_d(G_x^- \pm A_y^-) &= 1.18 \times 10^5 \text{ erg/cm}^3; \\ E_d(A_x^- \pm G_y^-) &= 0.95 \times 10^5 \text{ erg/cm}^3 \\ E_d(G_x^+ \pm A_y^+) &= 2.95 \times 10^5 \text{ erg/cm}^3; \\ E_d(A_x^+ \pm G_y^+) &= 3.18 \times 10^5 \text{ erg/cm}^3 \\ E_d(A_z^-) &= E_d(G_z^-) = -2.14 \times 10^5 \text{ erg/cm}^3. \end{split}$$

Les modes suivant z sont de beaucoup favorisés par l'énergie dipolaire. L'orientation observée à la température ambiante n'a donc pas l'énergie dipolaire pour origine mais le champ cristallin, et notamment la distorsion de la couche 3d dans le site bipyramidal; en effet cette distorsion peut conduire à une anisotropie suffisante pour expliquer les phénomènes observés. Pour ce site, des termes axiaux apparaissent dans l'expression du champ cristallin, comparables aux termes cubiques. On démontre que dans ce cas une anisotropie non négligeable, est créée (7).

En ce qui concerne la magnétoplombite BaFe₁₂O₁₉, l'anisotropie est surtout créée par le site bipyramidal à symétrie trigonale et $K = 6 \times 10^6$ erg/cm³ (8); dans le cas des ferrites spinelles et grenats dans lesquels on n'observe que des petites déformations des sites cubiques, elle est de deux ordres de grandeur inférieure (9, 10).

L'anisotropie induite par les termes axiaux du champ cristallin pour un site bipyramidal est telle que la direction de l'aimantation est suivant l'axe de la bipyramide (11) (dans BaFe₁₂O₁₉ la direction de facile aimantation est l'axe c, axe de la pipyramide) qui dans le cas de $SrTb_2Fe_2O_7$ est presque situé dans le plan de base de la structure.

Nous supposons une anisotropie de site pour Fe^{3+} dans $SrTb_2Fe_2O_7$ supérieure à celle dipolaire, à savoir

$$K_{\rm S} < E_d(A_z^{-}) - E_d(G_x^{-} \pm A_y^{-})$$

= -3.31 × 10⁵ erg/cm³.

valeur intermédiaire entre celle rapportée pour les ferrites spinelles et grenats et celle de $BaFe_{12}O_{19}$.

Ordre du Sous-Réseau des Ions Tb³⁺

La température élevée d'ordre du terbium indique que cet ordre n'est pas coopératif, mais qu'il s'agit plutôt d'un ordre induit par le champ effectif du sous-réseau du fer. En effet, pour l'orthoferrite correspondant, Tb-FeO₃, la température d'ordre induit du terbium est de 8.4 K, tandis que l'ordre coopératif, dû aux interactions entre ions Tb³⁺ ne s'établit qu'a 3.1 K (12). Dans le cas des ferrites grenats, jusqu'à 1.5 K la terre rare ne s'ordonne pas coopérativement. D'autre part, le moment du terbium à 4.2 K ($T = 0.15 T_N$) n'est pas saturé (par rapport au moment de l'ion libre); il ne vaut que 7.5 μ_B , tandis que dans TbFeO₃ L'existence d'un fort moment ferromagnétique sur l'ion Tb³⁺ ne permet pas la vérification par mesures magnétiques de l'existence ou absence d'un faible ferromagnétisme du fer permis par la théorie des groupes suivant F_x^+ associé à A_z^- dans la représentation E_g . Ce faible ferromagnétisme fournirait un mécanisme possible de polarisation du terbium. On ne peut cependant exclure des interactions d'échange anistrope.

L'ion Tb³⁺ occupe dans la structure un site ayant la symétrie *m*. Dans des sites d'aussi basse symétrie, la dégénérescence du fondamental ⁷F₆ peut être complètement levée par le champ cristallin (13), ce qui donne naissance à 13 singulets non dégénérés. Le moment magnétique relativement élevé observé (7.5 $\mu_{\rm B}$) indique que l'état fondamental du terbium est un "doublet accidentel" c'est-à-dire l'ensemble de deux singulets de faible séparation, et peut par conséquent avoir une interaction importante avec un champ magnétique (en l'occurence le champ moléculaire créé par le sous-réseau du fer).

Dans le cas d'un ion pair tel que Tb^{3+} , on démontre (14) que le tenseur g du "doublet" est non nul suivant une seule direction g et nul dans toute autre direction. Dans un site à symétrie *m*, le vecteur g est soit dans le plan miroir du site soit perpendiculaire à celui-ci (15). Un couplage important entre le fer et le terbium peut donc avoir lieu dans le plan *m* du site. Effectivement, à l'erreur expérimentale près ($S_x \simeq S_y$) le moment magnétique du terbium se trouve dans le plan m(xxz) pour les spins 1, 2, 5, 6 et dans le plan $m(x\bar{x}z)$ pour les spins 3, 4, 7, 8.

En conclusion cette étude a permis la détermination des propriétés magnétiques d'un membre d'une série très vaste de composés. Des études en cours par effet Mössbauer et par diffraction neutronique permettront de vérifier les hypothèses émises lors de la présente étude.

Les résultats de l'étude magnétique d'autres membres de la série, sur des échantillons polycristallins et monocristallins feront l'objet d'une prochaine note.

Remerciements

Nous remercions la DRME pour le soutien financier qu'elle a apporté à la réalisation de cette étude.

Références

- J. C. JOUBERT, D. SAMARAS, A. COLLOMB, G. LE FLEM, ET A. DAOUDI, *Mater. Res. Bull.* 6, 341 (1971).
- D. SAMARAS, A. COLLOMB, ET J. C. JOUBERT, J. Solid State Chem. 7, 337 (1973).
- 3. S. N. RUDDLESDEN ET P. POPPER, Acta Cryst. 11, 54 (1958).
- E. F. BERTAUT, "Treatise on Magnetism," G. T. Rado et H. Suhl, Eds., Vol. III, Academic Press, New York (1963).
- 5. E. F. BERTAUT, Acta Cryst. A24, 217 (1968).
- 6. D. SAMARAS, A. COLLOMB, ET J. C. JOUBERT, Mater. Res. Bull. 9, 693 (1974).
- 7. W. P. WOLF, Phys. Rev. 108, 1152 (1957).
- H. B. G. CASIMIR, J. SMIT, U. ENZ, J. F. FAST, H. P. J. WYN, E. W. GORTER, J. P. FAST, A. J. W. DRUYVESTEYN, ET J. J. JONG, *J. Phys. Rad.* 20, 360 (1959).
- 9. K. YOSIDA ET M. TACHIKI, Prog. Theor. Phys. 17, 331 (1957).
- 10. G. P. RODRIGUE, H. MEYER ET R. V. JONES, J. Appl. Phys. 31, 376S (1960).
- 11. J. FUCHIKAMI, Phys. Soc. Japan, 20, 760 (1965).
- E. F. BERTAUT, J. CHAPPERT, J. MARESCHAL, J. P. REBOUILLAT ET J. SIVARDIÈRE, Solid State Commun. 5, 293 (1467).
- 13. M. TINKHAM, "Group Theory and Quantum Mechanics," McGraw-Hill, New York (1964).
- 14. J. S. GRIFFITH, Phys. Rev. 132, 316 (1963).
- 15. A. P. MALOZEMOFF ET R. L. WHITE, Solid State Commun. 8, 665 (1970).